
RM2PT: Requirements Validation through
Automatic Prototyping

Yilong Yang∗, Wei Ke‡, Xiaoshan Li∗
∗Faculty of Science and Technology, University of Macau, Macau

‡Macao Polytechnic Institute, Macau
Email: yylonly@gmail.com, wke@ipm.edu.mo, xsl@umac.mo

Abstract—Prototyping is an effective and efficient way of
requirements validation to avoid introducing errors in the early
stage of software development. Our previous work presents a tool
RM2PT to automatically generate prototypes from requirements
models. The stakeholders can easily check whether the require-
ments reflect their real needs by investigating the executions of
use cases in the generated prototypes. However, the conflict and
contradictory of the requirements are hard to be discovered.
In this paper, we enhance RM2PT by introducing consistency
checking and state observations in the generated prototypes.
Requirements inconsistency can be automatically detected and
further fixed through carefully analyzing the contracts of system
operations and system state observations. We have conducted four
case studies with over 50 use cases. The experimental result shows
that 107 requirements inconsistency are founded in requirements
validations. Overall, the result is satisfiable, and the enhanced
RM2PT can be further applied to the software industry for
requirements validation.

The tool can be downloaded at http://rm2pt.mydreamy.net,
and a demo video casting its features is at https://youtu.be/
Y7GNa57WGfA

Index Terms—Requirements, Requirements Validation, Con-
sistency Checking, Prototype, Prototyping

Rapid prototyping is an effective approach to requirements
validation to demonstrate concepts, discover requirements
errors and find possible fixing solutions [1]. In practice, it
is very desirable to generate prototypes directly from re-
quirements automatically with a CASE tool. However, the
state-of-the-art tools still have long distances to reach the
goal [2]. Our previous work [3] presents a tool RM2PT to
automatically generate prototypes from requirements models.
The stakeholders can easily check whether the requirements
reflect their real needs by investigating the executions of
use cases in the generated prototypes. However, the conflict
and contradictory of the requirements (especially between the
contracts of system operations and invariants) are hard to be
discovered only depending on investigating the execution of
use cases.

In this paper, we present a tool RM2PT, which enhances
our previous work by introducing consistency checking and
state observation in the generated prototypes. Requirements
inconsistency can be automatically detected and further fixed
by observing system states with analyzing the contracts of
system operations. The remainder of this paper is organized
as follows: Section 2 presents the RM2PT features. Section 3
presents the evaluation results in the four case studies. Section
4 and 5 discuss the related tools and conclude this paper.

I. RM2PT FEATURES

A. Automatic Prototyping

RM2PT can automatically generate prototypes from a re-
quirements model, which contains a use case diagram, a
conceptual class diagram (no operations in the classes) with
class invariants, system sequence diagrams (system events only
between actors and systems) for use cases, and the contracts
of their system operations formally specified by a pair of pre-
and post-conditions in OCL (Object Constraint Language).

B. Validity Checking

Validity checking focuses on checking whether the require-
ments reflect the real needs of stakeholders. The generated
prototypes provide a function panel for use case executions.
The stakeholders can pick up a system operation of a use case,
type the input parameters, and click the execution button to
check whether the system returns the expected results.

C. Consistency Checking

Consistency checking is to examine whether requirements
models contain conflict and contradictory inside or between
different stakeholders during requirements validation and evol-
ution [4]. RM2PT can not only detect the syntax inconsistency
of requirements models but also can detect the semantic
inconsistency between the contracts (pre- and post-conditions)
of system operations and invariants. In details, three kinds of
requirements errors can make conflicts:

• Pre-condition Errors The execution of system operation
containing pre-condition errors may lead the system to an
unexpected state that violates system invariants.

• Post-condition Errors Post-condition errors can also lead
the system to an unexpected state that violates system invari-
ants and the pre-condition of the next system operations under
the same use case.

• Invariants Errors If there is no error in pre- and post-
condition of the contract, the invariant will not satisfy when
it contains inappropriate constraints.

To detect the conflicts, the generated prototypes of RM2PT
will check the corresponding contracts and all related invari-
ants before and after the executions of system operations. If
any requirements error makes the system into an unexpected
state, the corresponding pre- and post-condition, and invariant

http://rm2pt.mydreamy.net
https://youtu.be/Y7GNa57WGfA
https://youtu.be/Y7GNa57WGfA


panels will be automatically marked as the red from green
color in the generated prototype.

D. State Observation

The generated prototypes of RM2PT can automatically
detect the inconsistency, but locating and fixing errors require
more efforts. RM2PT provides the mechanism of observing the
current state of the objects in the prototype to help developers
to locate and fix the errors. For example, when the generated
prototype indicates that a correct invariant is violated after
the execution of system operation. The user can switch to the
state observation panel to check whether the current states of
objects are excepted. If not, the requirement errors must be in
the pre-condition if the post-condition is correct.

II. EVALUATION

We use four case studies to demonstrate the validity and
capacity of the proposed approach for requirements validation.
Those case studies are widely used systems in our daily
life: supermarket management system (CoCoME), Library
Management System (LibMS), Automated Teller Machine
(ATM), and Loan Processing System (LoanPS). During the
three-round requirements modeling, prototype generation, and
requirements validation on those four case studies, we found
107 requirements errors, which includes 31 errors in the pre-
condition, 68 errors in the post-condition, and 8 errors in
the invariant of the contracts. More details can be found at
GitHub1.

III. RELATED WORK

Test-case generation is the approach of requirements valid-
ation. CosTest [5] can automatically generate test cases and
test reports for requirements validation from an fUML model
compensated with Action Language Alf. fUML contains a
class diagram and activity diagrams, the details of implement-
ation are specified by Alf. That means CosTest not only need
requirements specifications but also a design, which contains
how to encapsulate the system operations into the classes,
and the implementations of the system operations. Besides,
test-case based validation is friendly for developers but not
customers and clients, that makes it hard for them to validate
their requirements through CosTest in practice.

The animation [6] is another important technique for re-
quirements validation. The paper [7] presents a tool for
interactively validating requirements through animation. It
takes BPMN as input and generates a mock-up user interface
prototype. The paper [8] presents a web animation tool for
requirements validation through exploring goals and scenarios,
in which it uses linear temporal logic to express goals, and
XML to define state transitions and UI components. TestME-
Req [9] can automatically generate mock-up user interface
as well as abstract test cases from requirements description.
It allows multiple stakeholders to collaboratively validate the
same set of requirements.

1https://github.com/RM2PT/CaseStudies

Compared with our work, the prototypes from their tools
are only mock-up, which do not contain the implementation
of the details of system operations. That means only the
coarse-grained requirements validation can be done through
basic animations, validity and consistency checking are not
included. Moreover, the mock-up prototype will be throw-
away after validation. The prototypes generated from our
tools are evolutionary, they embedded architecture patterns and
design patterns in Java EE and .NET enterprise system. That
makes the generated prototypes from our tools easier evolving
to be the practical software systems without too much cost.

IV. CONCLUSION

This paper presents a tool for requirements validation
through automatic prototyping. Requirements errors can be
found and fixed through executing of use cases in the prototype
with the new proposed function: consistency checking and
state observation. Four cases studies have been investigated,
and the experiment result is satisfactory that the 107 require-
ments errors are founded during validation of the features of
RM2PT. In the future, we will continue working on the fault
localization and fixing of requirements validation, especially
for reducing the human efforts in this process. Hopefully, it
can benefit the software industry in requirements engineering.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (NSFC) and the Macao Science and
Technology Development Fund Joint Scientific Research Pro-
ject (No. 0001/2018/AFJ) and NSFC project (No. 61562011).

REFERENCES

[1] F. Kordon and Luqi, “An introduction to rapid system prototyping,” IEEE
Transactions on Software Engineering, vol. 28, no. 9, pp. 817–821, Sep.
2002.

[2] F. Ciccozzi, I. Malavolta, and B. Selic, “Execution of UML models:
a systematic review of research and practice,” Software and Systems
Modeling, vol. 18, no. 3, pp. 2313–2360, Jun. 2019.

[3] Y. Yang, X. Li, Z. Liu, and W. Ke, “RM2PT: A tool for automated
prototype generation from requirements model,” in Proceedings of the
41th International Conference on Software Engineering: Companion
Proceedings (ICSE’19), May. 2019, pp. 59–62.

[4] I. Hadar and A. Zamansky, “Cognitive factors in inconsistency man-
agement,” in Proceedings of the 23th IEEE International Requirements
Engineering Conference (RE’15), Aug. 2015, pp. 226–229.

[5] M. F. Granda, N. Condori-Fernández, T. E. J. Vos, and O. Pastor,
“CoSTest: A tool for validation of requirements at model level,” in
Proceedings of IEEE 25th International Requirements Engineering Con-
ference (RE’17), Sep. 2017, pp. 464–467.

[6] A. Gemino, “Empirical comparisons of animation and narration in re-
quirements validation,” Requirements Engineering, vol. 9, no. 3, pp. 153–
168, Aug. 2004.

[7] G. Gabrysiak, H. Giese, and A. Seibel, “Deriving behavior of multi-user
processes from interactive requirements validation,” in Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering
(ASE’10), Sep. 2010, pp. 355–356.

[8] S. Uchitel, R. Chatley, J. Kramer, and J. Magee, “Fluent-based animation:
exploiting the relation between goals and scenarios for requirements
validation,” in Proceedings of the 12th IEEE International Requirements
Engineering Conference (RE’04), Sep. 2004, pp. 208–217.

[9] N. A. Moketar, M. Kamalrudin, S. Sidek, M. Robinson, and J. Grundy,
“An automated collaborative requirements engineering tool for better
validation of requirements,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE’16),
Sep. 2016, pp. 864–869.

https://github.com/RM2PT/CaseStudies

