
RM2Doc: A Tool for Automatic Generation of Requirements
Documents from Requirements Models
Tianshu Bao

School of Computer Science and Technology
Guizhou University
Guiyang, China

Jing Yang
School of Computer Science and Technology

Guizhou University
Guiyang, China

Yilong Yang∗
School of Software
Beihang University

Beijing, China

Yongfeng Yin
School of Software
Beihang University

Beijing, China

ABSTRACT
Automatic generation of requirements documents is an essential
feature of the model-driven CASE tools such as UML and SysML de-
signers. However, the quality of the generated documents from the
current tools highly depends on the attached descriptions of models
but not the quality of the model itself. Besides, if the stockholders
ask to generate ISO/IEC/IEEE 29148-2018 conformed documents,
extra templates are required. In this paper, we propose a CASE tool
named RM2Doc, which can automatically generate ISO/IEC/IEEE
29148-2018 conformed requirements documents from UML models
without any templates. In addition, the flow description can be gen-
erated from a use case without additional information. Moreover,
it can automatically generate the semantic description of system
operations only based on the formal expression of OCL. We have
conducted four case studies with over 50 use cases. Overall, the
result is satisfactory. The 95% requirements documents can be gener-
ated from the requirements model without any human interactions
in 1 second. The proposed tools can be further developed for the
industry of software engineering.

The tool can be downloaded at http://rm2pt.com/rm2doc, and a
demo video casting its features is at https://youtu.be/4z0Z5mrLfBc

KEYWORDS
Automatic Documentation, Requirements, Requirements Model,
Requirements Documents

ACM Reference Format:
Tianshu Bao, Jing Yang, Yilong Yang, and Yongfeng Yin. 2022. RM2Doc:
A Tool for Automatic Generation of Requirements Documents from Re-
quirements Models. In 44th International Conference on Software Engineering
Companion (ICSE ’22 Companion), May 21–29, 2022, Pittsburgh, PA, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3510454.3516850

∗Corresponding author: Yilong Yang (yilongyang@buaa.edu.cn)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9223-5/22/05. . . $15.00
https://doi.org/10.1145/3510454.3516850

1 INTRODUCTION
In requirements engineering, it is widely accepted that models are
the preferred method of capturing and communicating require-
ments. Models are more formal and semantically precise than nat-
ural language, which helps developers to specify and understand
requirements. However, the importance of documents should not be
overlooked, as models cannot be read directly by non-specialists. In
order to avoid problems in later stages, the model should be verified
(to be sure developers "developed the requirements right") and vali-
dated (to be sure developers "developed the right requirements").
The verification of requirements can be achieved by automated
methods[2][9]. But validation requires agreement between the de-
velopers and the stakeholders on what the system is intended to
achieve[3]. A common challenge in this context is the communica-
tion gap between stakeholders and developers[7]. The communica-
tion gap between them makes stakeholders unable to participate in
model validation well. Therefore, requirements documents are still
required for communication and review with stakeholder.

Generally, requirements documents are written manually, which
is a difficult and complex task that requires a great deal of effort.
This is also a factor in the lack of (good) documents for many
models. Even if documents were created at an early stage, as the
change of requirements and and the improvement of models, the
problem of inconsistencies between the model and the document
becomes more and more pronounced. To solve these problems, we
present RM2Doc: a tool for automatic documents generation from a
requirements model. Compared with other CASE tools, the benefits
of our tool are as follows:

1) Automatic generation of ISO/IEC/IEEE 29148-2018 conformed
requirements documents from UML models without any templates.

2) Automatic generation of the flow description from a use case
without additional information.

3) Automatical generation the semantic description of system op-
erations only based on the formal expression of OCL.

The remainder of this paper is organized as follows: Section 2
presents the overview of RM2Doc. Section 3 presents the evaluation
results on the four case studies. Section 4 and 5 discuss the related
tools and conclude this paper.

http://rm2pt.com/rm2doc
https://youtu.be/4z0Z5mrLfBc
https://doi.org/10.1145/3510454.3516850
https://doi.org/10.1145/3510454.3516850

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Bao and Yang, et al.

(a) Use Case Diagram

(d) Conceptual Class Diagram

(b) System Sequence Diagram

(c) Contracts of System Operations

Figure 1: Requirements Model

2 OVERVIEW
The architecture of RM2Doc is shown in Figure 2. RM2Doc takes a
requirements model as input and generates a requirements docu-
ment describing that model. In this section, we first introduce our
requirements modeling. Then, RM2Doc has two critical features
to help stakeholders validate requirements: the first is to generate
operations description from the contracts of system operations
and the second is to generate the requirements document for the
requirements model.

Rules

Templates

Contract

Contract

Contract

Contract

Generator

Formatter

OCL Contracts

UML Diagrams

Natural Language

Natural Language

Translator
Requirements Document

RM2Doc

Requirements Model

Xtend

Figure 2: Overview of RM2Doc

2.1 Requirements Modeling
RM2PT[11][13] is a CASE tool, which can automatically generate
prototypes from formal requirements models for requirements val-
idation. In order to provide more ways to validate requirements,
in this paper we propose RM2Doc, which is an extension of the
tool RM2PT. RM2Doc uses the same model as RM2PT. As shown in
Figure 1, it is a lightweight formal model that contains: a use case
diagram, system sequence diagrams, contracts of system operations
and a conceptual class diagram.

The contract of a system operation specifies the conditions that
the state of the system is assumed to satisfy before the execution of
the system operation, called the pre-condition and the conditions
that the system state is required to satisfy after the execution (if
it terminated), called the post-condition of the system operation.
Figure 1 (c) shows the OCL contract of system operation enterItem.
As shown in 1 (c), in our modeling approach, a contract consists of
four parts: the signature, the definition section, the precondition
section and the post-condition section:
Signature: The signature first specifies the name of the system
operation and the name of the use case to which it belongs. The
signature then declares the input parameters and return type of the
system operation.
Definition Section: In the definition section, the objects used
jointly by the precondition section and the post-condition section
are defined.
Precondition Section: The precondition specifies the properties of
the system state that need to be checked when system operation is
to be executed. In addition to the checking of objects and attributes
shown in Figure 1 (c), the precondition also includes the checking
of links between objects.
Post-condition Section: The post-condition defines the possible
changes that the execution of the system operation is to realize.
In addition to creating and adding objects, adding links between
objects, and modifying the attributes of objects as shown in Figure
2, the postconditions include the deletion of objects and the removal
of links between objects.

2.2 Generation of Operations Description
A system operation is an action performed by the system in re-
sponse to an external system input event. From the stakeholder’s
point of view, system operations define the functionality of the
system. Therefore generating a description of the system operation

RM2Doc: A Tool for Automatic Generation of Requirements Documents from Requirements Models ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

Contract ProcessSaleService::enterItem(barcode : Integer, quantity : Integer) : Boolean {
/* Generated by RM2Doc - Definition
* item is the object i in the instance set of class Item. i represents an object of class Item, and i meets:
* The attribute Barcode of the object i is equal to barcode
*/
definition:

item:Item = Item.allInstance()->any(i:Item | i.Barcode = barcode)
/* Generated by RM2Doc - Precondition
* currentSale exists
* The attribute IsComplete of the object currentSale is equal to false
* item exists
* The attribute StockNumber of the object item is greater than 0
*/
precondition:

currentSale.oclIsUndefined() = false and
currentSale.IsComplete = false and
item.oclIsUndefined() = false and
item.StockNumber > 0

/* Generated by RM2Doc - Postcondition
* sli represented the object of class SalesLineItem
* The object sli was created
* The object currentSaleLine became sli
* The object sli was linked to the object currentSale by BelongedSale
* The object currentSale was linked to the object sli by ContainedSalesLine
* The attribute Quantity of the object sli became quantity
* The object sli was linked to the object item by BelongedItem
* The attribute StockNumber of the object item became the previous value of the attribute StockNumber of the object item minus quantity
* The attribute Subamount of the object sli became the attribute Price of the object item times quantity
* The object sli was put into the instance set of class SalesLineItem
* The return value was true
*/
postcondition:

let sli:SalesLineItem in
sli.oclIsNew() and
self.currentSaleLine = sli and
sli.BelongedSale = currentSale and
currentSale.ContainedSalesLine->includes(sli) and
sli.Quantity = quantity and
sli.BelongedItem = item and
item.StockNumber = item.StockNumber@pre - quantity and
sli.Subamount = item.Price * quantity and
SalesLineItem.allInstance()->includes(sli) and
result = true

}

Figure 3: the Contract of System Operation enterItem and
Semantic Description

can help the stakeholder understand the system’s functionality. In
this subsection, we describe how RM2Doc translates the definition
section, the precondition section and the post-condition section of
a contract into natural language.

As described in subsection 2.1, the definition section defines the
objects. The precondition section checks the objects, their attributes
and the links between objects. The post-condition section includes
creation, addition, and deletion of objects, modification of attributes,
and addition and deletion of links. For these different operations,
we defined a total of 25 transformation rules for the three sections.
Transformation rules are presented in this form:

Rule : OCL Expression
Natural Language

The transformation rule contains two parts: the above section is
an OCL expression in the contracts, and the bottom part is the
corresponding natural language.

Algorithm 1 shows how to apply the rules to translate a contract
into natural language. The transformation algorithm first parses
the three sections of the input contract into three sets of OCL sub-
expressions def, pre and post. Then the algorithm performs rule
matching on each of these three sets of expressions, translates
them according to the matching result, and adds the translated
result nl to nls, and finally outputs natural language nls. Applying
the transformation rules through the transformation algorithm, the
OCL contracts are translated into natural language by the translator
of Figure 2.

Figure 3 shows the translating result of contract of system op-
eration enterItem. The natural language in the definition part and
the precondition is represented in the present tense. The post-
conditions represent the state of the system after execution has
been completed and their natural language representation is in the
past tense.

2.3 Generation of Requirements Document
Figure 5 shows the mapping from the model to the document. The
product functions section and user characteristics section are gen-
erated from the use case diagram. The functional requirements

Algorithm 1: Transformation Algorithm
Input: Contract
Output: Natural Language
𝑛𝑙𝑠 ← ∅;
𝑑𝑒 𝑓 ← 𝑝𝑎𝑟𝑠𝑒𝐷𝑒 𝑓 𝑖𝑛𝑖𝑡𝑖𝑜𝑛(𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡);
𝑝𝑟𝑒 ← 𝑝𝑎𝑟𝑠𝑒𝑃𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡);
𝑝𝑜𝑠𝑡 ← 𝑝𝑎𝑟𝑠𝑒𝑃𝑜𝑠𝑡𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡);
for 𝑒𝑥𝑝 ∈ 𝑑𝑒 𝑓 do

𝑛𝑢𝑚 ← 0;
𝑛𝑢𝑚 ←𝑚𝑎𝑡𝑐ℎ𝑅𝑢𝑙𝑒1𝑡𝑜6(𝑠);
𝑛𝑙 ← 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 (𝑒𝑥𝑝, 𝑛𝑢𝑚);
𝑛𝑙𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑛𝑙);

end
for 𝑒𝑥𝑝 ∈ 𝑝𝑟𝑒 do

𝑛𝑢𝑚 ← 0;
𝑛𝑢𝑚 ←𝑚𝑎𝑡𝑐ℎ𝑅𝑢𝑙𝑒7𝑡𝑜14(𝑠);
𝑛𝑙 ← 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 (𝑒𝑥𝑝, 𝑛𝑢𝑚);
𝑛𝑙𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑛𝑙);

end
for 𝑒𝑥𝑝 ∈ 𝑝𝑜𝑠𝑡 do

𝑛𝑢𝑚 ← 0;
𝑛𝑢𝑚 ←𝑚𝑎𝑡𝑐ℎ𝑅𝑢𝑙𝑒15𝑡𝑜25(𝑠);
𝑛𝑙 ← 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 (𝑒𝑥𝑝, 𝑛𝑢𝑚);
𝑛𝑙𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑛𝑙);

end
return 𝑛𝑙𝑠;

1. Introduction
1.1 Purpose
1.2 Scope
1.3 Product Overview

1.3.1 Product perspective
1.3.2 Product functions
1.3.3 User characteristics
1.3.4 Limitations

1.4 Definitions
2. References
3. Requirements

3.1 Functions
3.2 Database requirements
3.3 Performance requirements
3.4 Usability requirements
3.5 Interface requirements
3.6 Design constraints
3.7 Software system attributes

4. Verification
5. Appendices

Figure 4: Outline

Requirements Model

Use Case Diagram

System Sequence Diagrams

Contracts of System Operations

Conceptual Class Diagram

Requirements Document

1.3 Product Overview

1.3.2 Product functions

1.3.3 User characteristics

3. Requirements

3.1 Functions

3.2 Database requirements

Figure 5: Mapping from Model to Docu-
ment

section, which consists of a series of use case descriptions and sys-
tem operation descriptions, is generated from use case diagram,
system sequence diagrams and contracts of system operations. In
this section, the flow description of a use case is generated by the
system sequence diagram corresponding to that use case. The data-
base requirements section is generated from the conceptual class
diagram which includes a series of entity analysis.

In general, RM2Doc can generate the content of 5 parts in the
requirements document: product functions, user characteristics,
use case descriptions, system operation descriptions and entity
analyses. For these 5 parts, we have designed five Xtend templates.

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Bao and Yang, et al.

(a) "Product functions" and "User characteristics"

(b) Description for Use Case "processSale"

(c) Description for System Operation "enterItem"(d) Entity Analysis of "Item"

Figure 6: Requirements Document

By using these 5 Xtend templates, RM2Doc can generate a require-
ments document from a requirements model. In the rest of the
requirements document, we have predefined guidelines for writing
in accordance with the ISO/IEC/IEEE 29148-2018.

3 EVALUATION
We will introduction case studies first, then propose the evaluation
results based on the case studies.

3.1 Case Studies
In order to evaluate the RM2Doc, we reuse four case studies from the
paper [12]. Those case studies are widely used systems in our daily
life: Supermarket System (CoCoME), Library Management System
(LibMS), Automated Teller Machine (ATM), and Loan Processing
System (LoanPS). More details of the requirements models can be
found at GitHub1. The complexity of those requirements models are
shown in Table 1, which totally contains 17 actors, 51 use cases, 6
system sequence diagrams, 138 system operations, 38 entity classes,
and 49 associations of entity classes.

Table 1: The Complexity of Requirements Models

Case Study Actor Use Case SSD SO Entity Class Association

ATM 2 6 3 15 2 4
CoCoME 3 16 1 43 13 20
LibMS 7 19 0 45 11 17
LoanPS 5 10 2 35 12 8

Sum 17 51 6 138 38 49
* SSD is the abbreviation of system sequence diagram. SO is the abbreviations of system opera-
tions.

1https://github.com/RM2PT/CaseStudies

To illustrate the capabilities of RM2Doc, this section demon-
strates the generation of a requirements document from a require-
ments model. We use CoCoME as an example. The use case diagram
in Figure 1 (a), contains 3 participants and 16 use cases. RM2Doc
generates the "Product functions" and the "User characteristics" of
the document, as shown in Figure 6 (a).

Considering the system sequence diagram and the use case di-
agram in Figure 1, RM2Doc can generate a use case description
for the use case processSale, as shown in Figure 6 (b). Figure 1 (c)
presents the contract of enterItem, which is a system operation in
Figure 1 (b). According to the contract, RM2Doc generates a descrip-
tion of the system operation enterItem, as shown in Figure 6 (c). In
total, 16 use case descriptions and 43 system operation descriptions
are generated, and they form the "Functional requirements" of the
document. Based on CoCoME’s conceptual class diagram, as shown
in Figure 1 (d), RM2Doc generates the analysis of 13 entities, which
are then organized into the "Database requirements" of the docu-
ment. The Figure 6 (d) shows the generation result of the entity
Item.

3.2 Evaluation Results

Table 2: The Generation Result of Operations Description

Case Study NumSO MSuccess GenSuccess SuccessRate (%)

ATM 15 15 15 100
CoCoME 43 42 41 95.34
LibMS 45 44 42 93.33
LoanPS 35 32 32 91.42

Total 138 133 130 95.02
* MSuccess is the number of SO which is modeled correctly without external event-call,
GenSuccess is the number of SO which is successfully generated, SuccessRate = Gen-
Success / NumSO.

RM2Doc: A Tool for Automatic Generation of Requirements Documents from Requirements Models ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

Correctness of generation. For the correctness of the generation,
we consider two aspects. 1) For the generation of UML diagram
results, 17 actors, 51 use cases, 6 system sequence diagrams, 38 en-
tity classes, and 49 associations of entity classes were all generated
correctly. 2) As for the OCL contracts, the results of 138 system
operations are shown in Table 2, of which, 133 system operations
can be modeled correctly. And 130 of the 133 can generate semantic
descriptions correctly. The average success rate of the four cases
was 95.02%.
Time performance. The main application scenario for RM2Doc’s
documents generation is to provide natural language reference for
stakeholders. In addition, our generation can also provide devel-
opers with alternative views of the model. In the latter case, the
generation must be fast enough[7]. The experimental settings of
RM2Doc are 2.8 GHz Intel Core i5, 8 GB DDR3, and JDK 11. Gener-
ation for all 4 case studies spend less than 1 second, we consider
that this speed meets our expectations.

4 RELATED TOOLS
The tools closely related to RM2Doc can be divided into two cate-
gories according to the results generated.

The tools in the first category, which generate natural language
requirements from UML models, are as follows. TESSI[6] generates
natural language text for describing the model based on the UML
model. GeNLangUML[8] and KeY[1] use UML class diagrams as
input to generate natural language descriptions of class diagrams.
In addition, there has been some work[3][4] dedicated to extracting
well-structured business vocabulary and business rules from use
case diagrams and class diagrams. These tools use a single type of
model, and the results are mostly a set of disordered sentences or
not well organised. It is very difficult to find valuable content from
such results, and the application value is low.

The second type of tool is focused on generating the document
from software models. Wang et al.[10] propose a tool that generates
software requirement specifications, preliminary design specifica-
tions and detailed design specifications from UML models and
SmartC models. DocGen[5] generates a report from SysML models.
The modelling tools MagicDraw2 and Modelio3 have an integrated
documents generation function. In addition, some commercial tools
such as M2Doc4, GenDoc5 and pxDoc6 also support the generation
of structural documents from models. Such tools can generate the
organisation of the document, but 1) the content in the document
relies too much on the natural language descriptions that come with
the model, rather than on natural language generation techniques.
2) Most tools require a template for the document. Some templates
are quite complex to produce and for the novice this can be costly.
3) All these tools do not include the handling of OCL, which is a
complement to UML.

Compared to the above tools, RM2Doc 1) can generate well-
structured documents without additional templates from the user.
2) The natural language in the document does not only rely on the
natural language descriptions that come with the model, but can

2https://www.magicdraw.com/main.php
3https://www.modeliosoft.com/en
4https://www.m2doc.org
5https://www.eclipse.org/gendoc
6https://www.pxdoc.fr

also be generated by the model, e.g., a flow of a use case can be
generated from the system sequence diagram of the use case. 3)
Our tool can also translate the preconditions and post-conditions
of system operations into natural language.

5 CONCLUSION
This paper presents the RM2Doc tool. The tool generates require-
ments documents from the requirements model and improves the
productivity of requirements documents. The generated require-
ments document helps the stakeholders to perform requirements
validation. Four case studies evaluated the capability of RM2Doc.

In the future, wewill make some improvements tomake our tools
more useful. For example, we plan use deep learning to generate
more flexible andmore readable nature language from requirements
model.

ACKNOWLEDGMENTS
This work was supported by National Science Foundation of China
Grant NO. 61732019, and the Opening Project of Shanghai Trusted
Industrail Control Platform No. KH54327801

REFERENCES
[1] Håkan Burden and Rogardt Heldal. 2011. Natural Language Generation from

Class Diagrams. In Proceedings of the 8th International Workshop on Model-Driven
Engineering, Verification and Validation (MoDeVVa). Association for Computing
Machinery, 1–8.

[2] Jordi Cabot, Robert Clarisó, and Daniel Riera. 2007. UMLtoCSP: A Tool for the
Formal Verification of UML/OCL Models Using Constraint Programming. In
Proceedings of the 22th IEEE/ACM International Conference on Automated Software
Engineering (ASE ’07). Association for Computing Machinery, 547–548.

[3] Jordi Cabot, Raquel Pau, and Ruth Raventós. 2010. From UML/OCL to SBVR
specifications: A challenging transformation. Information systems 35, 4 (2010),
417–440.

[4] Paulius Danenas, Tomas Skersys, and Rimantas Butleris. 2020. Natural language
processing-enhanced extraction of SBVR business vocabularies and business
rules from UML use case diagrams. Data Knowl. Eng. 128 (2020), 101822.

[5] Christopher Delp, Doris Lam, Elyse Fosse, and Cin-Young Lee. 2013. Model based
document and report generation for systems engineering. In 2013 IEEE Aerospace
Conference. IEEE, 1–11.

[6] Petr Kroha, Philipp Gerber, and Lars Rosenhainer. 2006. Towards generation of
textual requirements descriptions from UML models. In Proceedings of the 9th
International Conference Information Systems Implementation and Modelling (ISIM
’2006). 31–38.

[7] Henrik Leopold, Jan Mendling, and Artem Polyvyanyy. 2014. Supporting Process
Model Validation through Natural Language Generation. IEEE Transactions on
Software Engineering 40, 8 (Aug 2014), 818–840.

[8] Farid Meziane, Nikos Athanasakis, and Sophia Ananiadou. 2008. Generating nat-
ural language specifications from UML class diagrams. Requirements Engineering
13, 1 (2008), 1–18.

[9] Aurelijus Morkevicius and Nerijus Jankevicius. 2015. An approach: SysML-based
automated requirements verification. In 2015 IEEE International Symposium on
Systems Engineering (ISSE ’15). IEEE, 92–97.

[10] Chao Wang, Hong Li, Zhigang Gao, Min Yao, and Yuhao Yang. 2010. An auto-
matic documentation generator based on model-driven techniques. In 2010 2nd
International Conference on Computer Engineering and Technology, Vol. 4. IEEE,
V4–175–V4–179.

[11] Yilong Yang, Wei Ke, and Xiaoshan Li. 2019. RM2PT: Requirements Validation
through Automatic Prototyping. In 27th IEEE International Requirements Engi-
neering Conference, RE 2019, Jeju Island, Korea (South), September 23-27, 2019.
IEEE, 484–485.

[12] Yilong Yang, Xiaoshan Li, Wei Ke, and Zhiming Liu. 2020. Automated Prototype
Generation From Formal Requirements Model. IEEE Transactions on Reliability
69, 2 (2020), 632–656.

[13] Yilong Yang, Xiaoshan Li, Zhiming Liu, and Wei Ke. 2019. RM2PT: A Tool for
Automated Prototype Generation from Requirements Model. In Proceedings of
the 41st International Conference on Software Engineering: Companion Proceedings
(ICSE ’19). IEEE, 59–62.

	Abstract
	1 Introduction
	2 Overview
	2.1 Requirements Modeling
	2.2 Generation of Operations Description
	2.3 Generation of Requirements Document

	3 Evaluation
	3.1 Case Studies
	3.2 Evaluation Results

	4 Related Tools
	5 Conclusion
	Acknowledgments
	References

